Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep.

نویسندگان

  • Mark P Brandon
  • Andrew R Bogaard
  • Chris M Andrews
  • Michael E Hasselmo
چکیده

During slow-wave sleep (SWS) and rapid eye movement (REM) sleep, hippocampal place cells in the rat show replay of sequences previously observed during waking. We tested the hypothesis from computational modeling that the temporal structure of REM sleep replay could arise from an interplay of place cells with head direction cells in the postsubiculum. Physiological single-unit recording was performed simultaneously from five or more head direction or place by head direction cells in the postsubiculum during running on a circular track allowing sampling of a full range of head directions, and during sleep periods before and after running on the circular track. Data analysis compared the spiking activity during individual REM periods with waking as in previous analysis procedures for REM sleep. We also used a new procedure comparing groups of similar runs during waking with REM sleep periods. There was no consistent evidence for a statistically significant correlation of the temporal structure of spiking during REM sleep with spiking during waking running periods. Thus, the spiking activity of head direction cells during REM sleep does not show replay of head direction cell activity occurring during a previous waking period of running on the task. In addition, we compared the spiking of postsubiculum neurons during hippocampal sharp wave ripple events. We show that head direction cells are not activated during sharp wave ripples, whereas neurons responsive to place in the postsubiculum show reliable spiking at ripple events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum.

The spiking activity of hippocampal neurons during rapid eye movement (REM) sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories. Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the...

متن کامل

Multiple spatial/behavioral correlates for cells in the rat postsubiculum: multiple regression analysis and comparison to other hippocampal areas.

Head direction cells in the rat postsubiculum fire in relation to the momentary directional heading of the animal, with each cell firing only when the animal faces in one particular direction. To understand how this signal might be generated, one useful step is to discover what other cell types, in addition to the head direction cells, may exist in the postsubiculum, since these cells might be ...

متن کامل

Persistent firing supported by an intrinsic cellular mechanism in a component of the head direction system.

The rat postsubiculum has head direction cells that fire persistently when the rat's head is oriented in particular directions. This persistent firing is maintained even if the rat is motionless, when spatial cues are removed from the environment and in the dark, but the mechanism that supports persistent firing of the head direction cells is still unclear. Here, using in vitro whole-cell patch...

متن کامل

Passive movements of the head do not abolish anticipatory firing properties of head direction cells.

Neurons in the anterior dorsal thalamic nucleus (ADN) of the rat selectively discharge in relation to the animal's head direction (HD) in the horizontal plane. Temporal analyses of cell firing properties reveal that their discharge is optimally correlated with the animal's future directional heading by approximately 24 ms. Among the hypotheses proposed to explain this property is that ADN HD ce...

متن کامل

Slow-wave sleep-imposed replay modulates both strength and precision of memory.

Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important ro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Hippocampus

دوره 22 3  شماره 

صفحات  -

تاریخ انتشار 2012